
INTEL DATA PARALLEL C++

JEFF HAMMOND
INTEL

§ Hardware diversity and open standards
§ Intel oneAPI and Data Parallel C++
§ Khronos SYCL
§ oneAPI libraries and usage info
§ Kokkos and RAJA update
§ Multi-GPU programming SYCL

OUTLINE

Diversity and complexity in computer architecture has been growing
continuously since the year 2000 and there is no indication that programming
is going to get any easier any time soon.
Even with architectural families, there are differences in how vendors
implement processors, both with software and hardware.
While performance tuning is architecture-specific and often microarchitecture-
specific, programmers are most productive when tuning working code, as
opposed to porting code then tuning it.

PROBLEM STATEMENT

US-DOE EXASCALE SYSTEMS (2021+)

What programming
model(s) take a developer

from 2012 to 2022?

Neither of these systems is
has a many-core CPU or an

NVIDIA GPU…

GPU SUPERCOMPUTERS ARE MULTI-GPU SYSTEMS

https://www.hpcwire.com/2020/03/11/steve-scott-hpe-cray-blended-product-roadmap/

https://www.servethehome.com/wp-content/uploads/2019/11/SC19-Intel-DoE-Aurora.jpg

Argonne Aurora: 2 CPU & 6 GPU NERSC Perlmutter and ORNL Frontier: 1 CPU & 4 GPU

https://www.enterpriseai.news/2020/05/20/amd-epyc-rome-tabbed-for-nvidias-new-dgx-but-hgx-has-intel-option/

NVIDIA HGX A100: 2 CPU & 8 GPU

https://www.hpcwire.com/2020/03/11/steve-scott-hpe-cray-blended-product-roadmap/
https://www.enterpriseai.news/2020/05/20/amd-epyc-rome-tabbed-for-nvidias-new-dgx-but-hgx-has-intel-option/

INTEL ONEAPI

Industry Intel
Initiative Product

Middleware / Frameworks

Application Workloads Need Diverse Hardware

Scalar Vector Matrix Spatial

XPUs

CPU GPU FPGA Other accel.

API-Based Programming
Libraries

Direct Programming

Data Parallel C++

oneAPI Industry Specification

Low-Level Hardware Interface

XPUs

Middleware / Frameworks

Application Workloads

Math Threading DPC++
Library

Analytics/
ML DNN ML Comm

Video
Processing

CPU GPU FPGA Other accel.

Visit oneapi.com for more details

Applications
Applications

oneapi.com

KHRONOS SYCL 2020 AND DATA PARALLEL C++

SYCL 2020

SYCL 1.2.1

ISO C++

Intel’s extensions – both the documentation and the implementation source
code - are currently available on GitHub: https://github.com/intel/llvm/

Intel DPC++ is a Clang-based open-source compiler
for ISO C++ and Khronos SYCL.
The SYCL 2020 provisional specification includes a
number of important improvements to SYCL 1.2.1:
§ Unified Shared Memory (USM)
§ Reductions
§ Subgroups
§ In-order queues
Intel continues to work with the SYCL community to
bring additional language features into the standard.

https://github.com/intel/llvm/

OpenCL has a well-defined, portable execution model, but is
considered too verbose by application programmers and lacks
good C++ support.
SYCL is based on purely modern C++, which allows it to support
heterogeneous accelerators within a single-source model.
SYCL parallelism is similar to TBB and the C++ STL while giving
users explicit control over hardware resources when they want it.

WHY SYCL?

OpenCL has a well-defined, portable execution model, but is
considered too verbose by application programmers and lacks
good C++ support.
SYCL is based on purely modern C++, which allows it to support
heterogeneous accelerators within a single-source model.
SYCL parallelism is similar to TBB and the C++ STL while giving
users explicit control over hardware resources when they want it.

WHY SYCL?

SYCL is the first standard programming model designed
for heterogeneous programming with modern C++

§ If you do not like modern C++, you will
not like SYCL.

§ If you want access to low-level hardware-
specific features that are only accessible
using a vendor-provided model, SYCL
may not meet your needs.

§ Unlike OpenMP, some hardware vendors
are not supporting OpenCL/SPIR-V.

WHY NOT SYCL?

§ If you do not like modern C++, you will
not like SYCL.

§ If you want access to low-level hardware-
specific features that are only accessible
using a vendor-provided model, SYCL
may not meet your needs.

§ Unlike OpenMP, some hardware vendors
are not supporting OpenCL/SPIR-V.

WHY NOT SYCL?

The Intel oneAPI HPCKit includes OpenMP
target for GPUs, including support for MKL.

SYCL ECOSYSTEM AS OF JUNE 2020

https://www.khronos.org/assets/uploads/apis/2020-05-sycl-landing-page-02_2.jpg

https://www.khronos.org/assets/uploads/apis/2020-05-sycl-landing-page-02_2.jpg

SYCL PLATFORM PORTABILITY MEASUREMENTS
§ Authors:

Tom Deakin and Simon McIntosh-Smith
of the University of Bristol

§ Paper:
https://dl.acm.org/doi/abs/10.1145/33
88333.3388643

§ Video:
https://www.youtube.com/watch?v=5W
6SsreZ3ew

§ Code: https://github.com/UoB-
HPC/BabelStream

The low SYCL/OpenCL performance on Intel Xeon processors is
a known implementation issue in Intel OpenCL. It is not a

fundamental limitation and will be fixed in the future.

https://dl.acm.org/doi/abs/10.1145/3388333.3388643
https://www.youtube.com/watch?v=5W6SsreZ3ew
https://github.com/UoB-HPC/BabelStream

SYCL PLATFORM PORTABILITY MEASUREMENTS
§ Authors:

Brian Homerding and John
Tramm of Argonne National
Laboratory

§ Paper:
https://dl.acm.org/doi/abs/1
0.1145/3388333.3388660

§ Video:
https://www.youtube.com/w
atch?v=-xzuFLZ64W0

§ Code:
https://github.com/homerdin
/RAJAPerf/tree/sycl

https://dl.acm.org/doi/abs/10.1145/3388333.3388660
https://www.youtube.com/watch?v=-xzuFLZ64W0
https://github.com/homerdin/RAJAPerf/tree/sycl

PROGRAMMING IS ALSO ABOUT THE CODE YOU DON’T WRITE!

§ oneDPL: C++ standard library functions, including GPU parallel STL
§ oneMKL: math library for Intel CPU and Intel GPU

– CodePlay contributed CUBLAS support

§ oneDNN: Deep Neural Network Library (was MKL-DNN)
– Supports a variety of non-Intel processors already

§ oneCCL: Collective Communication Library (was MLSL)
§ oneDAL: Data Analytics Library (was DAAL)
§ oneVPL: Video Processing Library

ONEAPI LIBRARIES

https://spec.oneapi.com/versions/latest/index.html

https://spec.oneapi.com/versions/latest/index.html

§ oneAPI specifications https://www.oneapi.com
§ Intel oneAPI implementation https://software.intel.com/en-us/oneapi

– Apt, Yum, Zypper installation on Linux
– Docker
– Traditional online and offline binary installers for Linux and Windows
– DevCloud: https://intelsoftwaresites.secure.force.com/devcloud/oneapi

– DevCloud includes CPU, GPU and FPGA hardware…

§ Tutorials and sample code
– https://github.com/jeffhammond/dpcpp-tutorial
– https://github.com/alcf-perfengr/sycltrain
– https://github.com/oneapi-src/oneAPI-samples
– https://software.intel.com/content/www/us/en/develop/articles/brightskies-experience-

using-oneapi-for-reverse-time-migration.html

LEARN MORE ABOUT ONEAPI

https://www.oneapi.com/
https://software.intel.com/en-us/oneapi
https://intelsoftwaresites.secure.force.com/devcloud/oneapi
https://github.com/jeffhammond/dpcpp-tutorial
https://github.com/alcf-perfengr/sycltrain
https://github.com/oneapi-src/oneAPI-samples
https://software.intel.com/content/www/us/en/develop/articles/brightskies-experience-using-oneapi-for-reverse-time-migration.html

§ Active development of SYCL/DPC++ and OpenMP target backends driven by
DOE ECP and Aurora Early Science Projects.

§ SYCL 2020 spec added key features required by Kokkos/RAJA
– Unified shared memory (pointer-based) and allocators
– Unnamed lambda support
– Reductions

§ Application development in progress using
– RAJA/Umpire SYCL/DPC++ backend
– Kokkos OpenMP target backend

K&R C++ ENABLING IN ONEAPI

9/1/20Intel Top Secret

private:
std::vector<sycl::queue> list;

public:
queues(void) {
auto platforms = sycl::platform::get_platforms();
for (auto & p : platforms) {
auto devices = p.get_devices();
for (auto & d : devices) {
if (d.is_gpu()) {
list.push_back(sycl::queue(d));

}
}

}
}

DETECT ALL THE GPUS

https://github.com/jeffhammond/PRK/blob/dpcpp-multi-gpu-transpose/Cxx11/prk_sycl.h

Assumptions and logic to ensure devices are in the same context are hidden…

https://github.com/jeffhammond/PRK/blob/dpcpp-multi-gpu-transpose/Cxx11/prk_sycl.h

§ Buffers are wonderfully opaque but makes reasoning about sharing hard.
§ USM shared data moves between host and device (d2d is not portable).
§ USM device data does not migrate – start here.

SYCL 2020 DATA MODELS

Allocation Type Initial Location Accessible By Migratable To

device device

host No host No

device Yes device -

Another device Optional (P2P) Another device No

host host
host Yes host -

Any device Yes (~PCIe) device No

shared host / device /
Unspecified

host Yes host Yes

device Yes device Yes

Another device Optional (P2P) Another device Optional

template <typename T>
void allocate(std::vector<T*> & device_pointers, size_t num_elements)
{

for (const auto & l : list | boost::adaptors::indexed(0)) {
auto i = l.index();
auto v = l.value();
device_pointers[i] = sycl::malloc_device<T>(num_elements, v);

}
}

// Placement new is your friend if you want to allocate nontrivial
// types in GPU, e.g. Quicksilver.
// std::pmr also works (there should be an example in the DPC++ repo).

DEVICE ALLOCATION

https://github.com/jeffhammond/PRK/blob/dpcpp-multi-gpu-transpose/Cxx11/prk_sycl.h

https://github.com/jeffhammond/PRK/blob/dpcpp-multi-gpu-transpose/Cxx11/prk_sycl.h

Bulk-synchronous, host-controlled data movement:
§ Broadcast to devices, Reduce from devices (replicated data)
§ Scatter to device, Gather from devices (unique data)
§ Device all-to-all (unique data)
§ Add more later…

DESIGN STRATEGY

0 1 2 3

0 1 2 3

S
G

0123 0123 0123 0123

A

1 1 1 1

1 4

B
R

0000 1111 2222 3333

§ All of these operations can be implemented in naïve but portable O(N) ways.
§ All of these operations can optimized with device P2P, etc.

IMPLEMENTATION DETAILS

template <typename T, typename B>
void scatter(std::vector<T*> & device_pointers,

const B & host_pointer,
size_t num_elements)

{
auto bytes = num_elements * sizeof(T);
for (const auto & l : list | boost::adaptors::indexed(0)) {

auto i = l.index();
auto v = l.value();
auto target = device_pointers[i];
auto source = &host_pointer[i * num_elements];
v.memcpy(target, source, bytes);

}
}

https://github.com/jeffhammond/PRK/blob/dpcpp-multi-gpu-transpose/Cxx11/prk_sycl.h

https://github.com/jeffhammond/PRK/blob/dpcpp-multi-gpu-transpose/Cxx11/prk_sycl.h

EXAMPLE PROGRAM

qs.allocate<T>(d_A, N);
qs.free(d_A);
qs.scatter<T>(d_A, h_A, N);
qs.gather<T>(h_A, d_A, N);
qs.waitall();

https://github.com/jeffhammond/PRK/blob/dpcpp-multi-gpu-transpose/Cxx11/nstream-multigpu-dpcpp.cc

for (int g=0; g<np; ++g) {
auto q = qs.queue(g);
auto p_A = d_A[g];
q.parallel_for(sycl::range<1>{N},[=] (sycl::id<1> i) {

p_A[i] += 1;
});

}

Helper functions

Trivial data-parallel compute

auto qs = queues();
auto np = qs.size();
auto h_A = prk::vector<T>(np*N, 0);
auto d_A = std::vector<T*>(np, nullptr);

State

https://github.com/jeffhammond/PRK/blob/dpcpp-multi-gpu-transpose/Cxx11/nstream-multigpu-dpcpp.cc

§ Like MPI, SYCL is explicit about providing a handle to state.
– MPI communicators, groups, requests, windows, etc.
– SYCL platforms, devices, queues, contexts, etc.

§ Explicit device handles make the task of multi-GPU programming easier.
– Contrast: CUDA runtime API hides the device id and CUBLAS contexts don’t capture it…

§ If GPU compute is tightly coupled, build a data-centric abstraction to manage
allocation, data movement, synchronization, and collective compute.
– PETSc, Elemental and Global Arrays are good examples of this in the MPI plane.

§ Load-store is not a good abstraction for most interconnects…

MULTI-GPU SYCL

for (int i=0; i<ngpus; ++i) {
check(cudaSetDevice(i));
check(cublasCreate(&contexts[i]));

}

for (int i=0; i<ngpus; ++i) {
check(cudaSetDevice(i));
check(cudaDeviceSynchronize());

}

https://github.com/jeffhammond/PRK/blob/dpcpp-multi-gpu-transpose/Cxx11/dgemm-multigpu-cublas.cu

https://github.com/jeffhammond/PRK/blob/dpcpp-multi-gpu-transpose/Cxx11/dgemm-multigpu-cublas.cu

§ The hard problems in multi-GPU programming are identical to those of
multi-anything programming:
– Data decomposition, load-balancing, debugging, etc.
– Whether you use MPI or not, thinking like an MPI programmer will help.

§ For balanced computation and symmetric performance, bulk-synchronous
compute is fine, and makes parallel programming easy.
– Bulk synchronous gets a bad name because of imbalanced computation and asymmetric

performance (jitter), which is associated with uncoupled systems (nodes) and contended
networks.

– The data movement efficiency of optimized collectives can be worth quite a lot.

§ For imbalanced computation, pre-compute as much of the work assignment
as possible (inspector-executor model).

MULTI-GPU SYCL

